FINSLER SPACES WITH THE SECOND APPROXIMATE MATSUMOTO METRIC

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of locally dually flat first approximate Matsumoto metric

The concept of locally dually flat Finsler metrics originate from information geometry. As we know, (α, β)-metrics defined by a Riemannian metric α and an 1-form β, represent an important class of Finsler metrics, which contains the Matsumoto metric. In this paper, we study and characterize locally dually flat first approximation of the Matsumoto metric with isotropic S-curvature, which is not ...

متن کامل

R-complex Finsler Spaces with (α, Β)-metric

In this paper we introduce the class of R-complex Finsler spaces with (α, β)-metrics and study some important exemples: R-complex Randers spaces, R-complex Kropina spaces. The metric tensor field of a R-complex Finsler space with (α, β)-metric is determined (§2). A special approach is dedicated to the R-complex Randers spaces (§3). AMS Mathematics Subject Classification (2000): 53B40, 53C60

متن کامل

The Geometry of Finsler Spaces

The term "Finsler space " evokes in most mathematicians the picture of an impenetrable forest whose entire vegetation consists of tensors. The purpose of the present lecture is to show that the association of tensors (or differential forms) with Finsler spaces is due to an historical accident, and that, at least at the present time, the fruitful and relevant problems lie in a different directio...

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2002

ISSN: 1015-8634

DOI: 10.4134/bkms.2002.39.1.153